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Oscillations of species concentration are phenomena accompanying several types
of electrochemical and purely chemical processes. Importance of analyzing of such
processes results from both scientific and practical reasons. In the paper the authors
deal with investigation of time dependent spectra of various stages of Belousov-Zhab-
otinsky type chemical oscillations. As the analytical tool the discrete wavelet transform
is proposed.
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1. Introduction

It was found that there exist chemical systems which exhibit highly nonlinear
and complicated dynamic behavior. The best known and studied Belousov—Zhab-
otinsky (BZ) reaction is an example of chemical process which, depending on the
conditions in which it is conducted, performs oscillations of different form: peri-
odic, mixed-mode and even chaotic [1]. The BZ reaction consists in the oxidation
of organic substrate (usually malonic acid) by bromate in strong acidic condi-
tions [2]. The mechanism of BZ reaction has been extensively studied and well
described in the form of, so called, FKN mechanism and then mathematically
modeled as an Oregonator [3]. But the complex mechanism of BZ reaction has
not been revealed and great number of publications, devoted to the problem of
kinetics and dynamics of that reaction, is published every year.

The interpretation and identification of complex chemical systems is usually
performed on the basis of time series analysis. Majority of different meth-
ods of time series analysis has been developed in order to investigate and
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describe the dynamics of nonlinear chemical systems. Among them analysis of
phase portraits, Poincare sections and maps methods [4], attractor reconstruc-
tion, Lyapunov exponent analysis should be mentioned [5]. The analysis of sig-
nal evolution in the direct space of representation is classically complemented by
the examination of an equivalent representation in the Fourier domain. In order
to distinguish between periodic, quasiperiodic and chaotic regimes in BZ oscilla-
tions the power spectra can be determined [6]. In general, power spectral density
describes the frequency and the energy distribution of the analyzed signal [7]. It
is the unquestionable advantage of classical Fourier transform. Unfortunately the
Fourier transform has its limitations. It gives proper results in case of stationary
signals. Moreover, by switching to the Fourier domain, a mathematically equiv-
alent representation is obtained but all the explicit temporal descriptions of the
signal are lost. Most of chemical oscillations are non-stationary signals and their
spectral composition cannot be properly analyzed using Fourier transform.

In recent years several novel representations allying time and frequency
or time and scale of analysis have been introduced in literature. In case of
nonlinear, nonstationary signal the time-frequency analysis provides revealing
its simultaneous energy and frequency distribution in time domain [8-10]. The
applications of short time Fourier transform (STFT) and some functions from
Cohen’s class distributions to the joint time and frequency analysis of chemical
oscillations have been described elsewhere [11,12]. The aim of the current paper
is to present possible applications of wavelets in the characterization of complex
chemical signals.

2.  Experimental

The reagents KBrOj;, H,SO4, CH,(COOH,, Ce(SO,)-4H,O were of ana-
Iytical grade. All the solutions were prepared using triply distilled water. The
oscillatory BZ reaction was conducted in the reactor with perfect mixing, which
was thermostatically maintained at 25°C in water bath. Appropriate volumes
of KBrO3;, H>,SO4, CH,(COOH,, Ce(SO;)-4H,0 solutions were poured in this
order into the reactor and then mixed. Stirring was initiated during addition of
the reagents. In order to register the oscillations, bromide selective and platinum
electrode were used. Changes of potentials of the electrodes were registered ver-
sus calomel reference electrode, connected with reacting mixture via salt bridge.
The volume of reacting mixture was 220 ml and the volume of reactor 250 ml.
Data acquisition system consisted of a DAQ 16-XE50 card, 4-channel SCXI-
1121 isolation amplifier and antialiasing SCXI-1141 filter. The system allowed
collection of data in two-channel mode, at high level of accuracy and with nec-
essary amplification. The potential fluctuations of the electrodes were registered
with sampling frequency 10 Hz.
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2.1. Method of analysis

Significant information concerning the character of complex chemical process
may be delivered by applying spectral analysis. A classic approach to the above
problem is based on application of Fourier analysis. When analyzing discrete
records, the discrete Fourier transformation [7] is used, defined by formula:

N-1

X =Y x(k) exp<¢> )

0

where X (n), usually complex-valued Fourier transform of signal x(k), N, length
of analyzed record, k, index of discrete time, n, index of discrete frequency. In
order to present the signal energy distribution in the domain of frequency, a
power spectral density estimator PSD(n) is introduced of dimension (in the case
of a dependent variable of potential dimension) V?/Hz:

2
PSD() = 2[F{x(k)}| @)
N

Independence of time is an important feature of the Fourier transform
presented in relation (1). In the case of a discrete Fourier transformation, the
analyzed signal is presented in the form of finite trigonometric series, the terms
of which correspond to sinusoid functions of a given frequency. Analysis of sig-
nals applied in electrochemical investigation is primarily reduced to investiga-
tions of amplitude characteristics, delivering required information on the signal
energy distribution.

Real-world oscillations recordings take the form of complicated structures
of a large variety of shapes dependent on the physicochemistry of respective
reactions. Determination of the energy distribution can be a ‘fingerprint’ of an
appropriate oscillation structure.

Figure la presents a single oscillatory structure. In figurelb the
corresponding power spectral density function has been presented. The PSD in
the discussed case can be the proper fingerprint of the described signal. Figure I¢
illustrates a situation where another structure occurs, separated from the first one
with an arbitrarily chosen time interval. In figure 1d the respective power spectral
density function has been presented for the described case. A different power
is visible in the domain of frequency. It is caused by lack of time localization
of Fourier series terms describing the analyzed recording. Approximation of the
described signal with a system of sinusoidal functions should take into account
components responsible for pulses, as well as the drop of the instantaneous sig-
nal value occurring between them. Hence, the described PSD is not a multiple of
the fingerprint of single oscillation but one of a new function composed of two
pulses separated by a given distance.
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Figure 1. Simulated time series of the BZ reaction (single oscillation (a) and two successive oscil-
lations (c) with corresponding PSD spectra (b) and (d). Time series calculated on the basis of the
scheme of modified Oregonator model [13].

Application of joint analysis in the domain of time and frequency is
proposed as an alternative to Fourier analysis. This problem was discussed by
Darowicki et al. [14,15]. In this paper the possibility of application of one of
the time-frequency analysis techniques, namely wavelet transformation, in elec-
trochemical oscillation investigations has been presented.

Continuous wavelet transformation of signal s(¢) is defined as:

W(a, ) = |a| 2 /oo s(t)yw* (t_TT) dr 3)

—00

where ¢ variable denotes the time shift and a represents dilation of so-called
mother wavelet w(z), asterisk represents the complex conjugation.
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The set of wavelet functions is obtained by shifting and dilating of proto-
typic mother wavelet w(¢) at unit scale a = 1 and position ¢ = 0:

Wa,7) = la|"?w (”7’) (4)

Factor |a|~'/? introduces equality of energy of rescaled wavelets.

The continuous wavelet transform is redundant. In practical implementa-
tions it is sufficient to use discrete version of transform. In order to obtain this
form of signal presentation continuous parameters a and ¢ can be represented
as:

a:ag, T =1jd*, jkeZ %)

Such an operation leads to the new form of formula of dilating and shifting
mother wavelet:

—k)2

wi, (1) — lagl ™ w(ay*t — 7)) (6)

In the case of ag = 2 and 7y = 1 set of wavelets derived in this way forms dyadic,
orthonormal basis in the L? space [16,17]. Signal is then represented by the sum
of following wavelet series:

s(t) =) bejw () @)

k.j

where by ;, coefficients of wavelet expansion of the signal s(¢), wy ;(¢), wavelets.
The set of coefficients by ; is determined by the correlation degree of function
s(¢) with the wavelet of frequency and time localization given by k£ and j, respec-
tively. As the square of continuous or discrete wavelet transform modulus can be
taken as the measure of the signal energy, application of the wavelet transforma-
tion allows obtaining the time-dependent signal energy distribution.

A number of wavelet families are used in practical applications. Their exten-
sive review with principles of their formation and determination of required
properties can be found in [16]. Introduction the tree algorithm by Mallat [17,18]
led to application of digital filter banks in the process of obtaining wavelet
expansion coefficients (transform) from sampled signal s(¢). The set of vectors
by, of coefficients is obtained by filtering performed by a set of filters associated
with a given wavelet [16]. After the filtering, decimation of the resultant vector
proceeds. The vector resulting from high-pass filtering is treated as the vector of
wavelet coefficients, whereas set of low-pass coefficients is the input vector for the
next level of filter bank. The signal filtering and decimation operation is repeated
by iteration on consecutive levels of the filter bank leading to separation of the
signal into frequency bands (analysis levels) which correspond to the scale var-
iable k. Coefficients obtained on consecutive analysis levels can be processed in
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order to expose or remove signal properties disclosed at a given level. It should
be noticed that as the transform expressed in the form of coefficients depends
on time then isolation is possible of a group of coefficients responsible for local
signal properties occurring at given moments of time and frequency ranges.

The set of coefficients, obtained as the result of application of a set of ana-
lyzing filters, submitted to processing is the basis of signal reconstruction. When
the orthogonal wavelet is applied, it is a reversal of the analysis procedure, i.e.,
interpolation of coefficient vectors with filtering by filters being mirror reflec-
tions of analyzing filters. Reconstruction of the signal is performed separately in
consecutive levels of synthesizing filter sets, giving a set of courses specified as
approximation and details or crystals [19], determining signal properties charac-
terizing it on a given level of analysis (frequency band).

3.  Results and discussion

Figure 2a presents the exemplary transient of BZ reaction in the closed sys-
tem. The trace of bromide-selective electrode, consisting of dozens of oscillations
can be clearly resolved into repeating periods corresponding to the elementary
chemical processes well described in a FKN mechanism. According to the FKN
mechanism an interpretation of the chemistry in BZ system involves three, over-
all summary reactions.

(A) BrOj +2Br~ +3CH, (COOH), + 3H* — 3BrCH(COOH), + 3H,0O
(B) BrO; +4Ce*" + CH, (COOH), + 5H* — BrCH(COOH), + 4Ce*t +3H,0
(C) 4Ce*t + BrCH(COOH), + 2H,0 — Br~+4Ce*t + HCOOH + 2CO, + SH*

The processes A, B and C consist of several steps.
Process (A):

(1) BrO; + Br™ + 2H* — HBrO, + HBrO

(2) HBrO, + Br~ + H" — 2HBrO

(3) Br~ + HBrO + H" — Br, + H,O

(4) Bry + CH,(COOH), — BrCH(COOH), + Br~ + H*
Process (B):

(5) BrO; + HBrO, + H* — 2BrO, - +H,0

(6) Ce** + BrO, - +H* — Ce** + HBrO,

(7) 2HBrO, — HBrO + BrO; + H*

(8) Br~ + HBrO + H* — Br; + H,0

(9) Br, + CH,(COOH), — BrCH(COOH), + Br~ + H*



K. Darowicki et al. | Application of discrete wavelet transform 707

(a) T T T T T T
—0.18f : H

—0.2+ ‘\‘\‘!‘M M‘ ‘

>
< —0.22

Es

-0.24f 1

—0.26f 8

0 2000 4000 6000 8000 10000 12000
t/s

(b) —0.13 , . .
—0.14
-0.15
-0.16

. —0.17
-0.18

—0.19

-0.2

G : ‘G

—0.21 - - -
2000 2025 2050 2075

t/s

Figure 2. Exemplary time record of bromide selective electrode potential oscillations during the BZ

reaction figure 2a. The reagent concentrations are as follows: [KBrO;] = 0.07 M, [CH,(COOH),] =

0.4 M, [Ce(SOy4),] = 0.001 M, [H,SO4] = 1 M. Figure 2b shows a fragment of potentiometric trace

exhibiting characteristic periods of BZ reaction. The reagent concentrations are the same like in
figure la except [CH,(COOH),] = 0.4 M.

For the sake of simplicity the full version of FKN mechanism will not be
discussed here, because it was widely described in the literature [20]. Generally
speaking two sets of essentially noninteracting reactions, nonradical process A
and radical process B, are coupled by the third process C. Bromide ion is the
critical intermediate which concentration determines whether process A (of high
Br~ concentration) or process B (of low Br~ concentration) is in control. Pro-
cess C inhibits process B by the production of Br~ from products of process B
what returns control to process A.

The single oscillation, presented in the figure 2b, consists of subsequent
sections corresponding to the elementary chemical reactions. The subsequent
periods are: period GH called ‘slow bromide production period’ is characteristic
for reactions of process B, section HE, called ‘rapid bromide production’ during
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which oxidation of malonic acid by bromate is proceeding quite rapidly whereas
concentration of Br7is very low and Ce**/Ce** remains at relatively constant
value. Reactions of process A are characteristic for the next section EF called
‘slow bromide consumption’. At point F, the bromide concentration has reached
critical value and the onset of process B starts until the point G. The steep slope
FG is called ‘rapid bromide consumption’.

The FKN was presented to explain the mutual interactions between major
species in BZ system. According to this the rate of oscillations, as well as the
shape of single oscillation, is determined by the rate of turning on and off appro-
priate reactions at proper time. The frequency of the processes of formation
and decay of cerium ion and bromide ion alternately is an important param-
eter related with the kinetics of BZ reaction. Wavelet transform, presented in
previous section, allows both to decompose analyzed chemical signal on details
corresponding to the particular chemical transitions and to track them during
the investigated process. It may provide valuable information about kinetics of
BZ reaction. Thus the systematic wavelet analysis of chemical oscillations is jus-
tified.

Figure 3 presents the discrete-time scalogram of single oscillatory struc-
ture presented in figure 2a. Reconstructions of the first four wavelet coefficients
(details) are considered. Maxima of the representation obtained are well corre-
lated with two types of potential course shape changes. According to the theory
of wavelets [21], in the case of application of the shortest Daubechies wavelet of
order 2 minima of the scalogram represent extremal points of potential value.
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Figure 3. Scalogram of single oscillation of signal presented in figure 2a, k denotes the number of
the analysis level. |d(z, k)| is the modulus of consecutive reconstruction from detail k.
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Taking into account the mathematical model of reaction they can be related to
the moments of triggering of different stages of the reaction under consider-
ations. However, detection of extremal points of singular chemical oscillations
is rather simple task and does not need to be supported by wavelet decompo-
sition. Much more interesting feature of DWT scalogram is connected with its
maxima. It can be observed that they are correlated with moments of abrupt
changes of E(r). Direct estimation of time instants on the basis of time-domain
record is complicated, especially taking into account point H corresponding to
one of the reactions from the process B. In the presented example time location
of discussed point is determined on the basis of analysis of maxima of scalo-
gram. It is worth noting that, distinctly visible, discontinuity in the investigated
oscillation, represented by point H on the scalogram, is hardly recognizable in
time domain.

In the figure 4 results of similar analysis are presented. The oscillations per-
sistence was extended to five full cycles of potential changes. It can be observed
that similar structure of scalogram is obtained for all oscillations. Vertical lines
connect the moments of change in reaction represented by local maxima of the
scalogram and described earlier point F from which the onset of reactions of
process B begins.
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Figure 4. Scalogram of a fragment of signal presented in figure2a. Daubechies wavelet of order 2
applied.
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4.  Conclusions

Most chemical oscillations, from statistical point of view, are nonstationary
signals. Such signals need appropriate method of analysis. The suitable method
for nonstationary signals analysis is wavelet transform. In this paper a simpli-
fied theory of wavelets with example of application of discrete wavelet transform
in the analysis of oscillatory BZ reaction has been presented. Processing of the
chosen experimental potential oscillations, generated during BZ reaction in the
closed system, allowed recognizing particular stages of reaction. The characteris-
tic moments, corresponding to the chemical transitions, are clearly visible as the
details of decomposition on the calculated scalograms. It has been shown that
the method can deliver information on the dynamics of chemical oscillations, for
example on the basis of local maxima analysis in the wavelet scalogram the char-
acter of oscillations frequency attenuation may be determined. In case of inves-
tigated electrode potential oscillations the most suitable wavelet basis has been
identified. The Daubechies order 2 are experimentally found to be very appropri-
ate for wavelet analysis of chemical oscillations. Basing on the presented results
we may state that better understanding of complicated dynamics of chemical
oscillations can be obtained through further wavelet analysis of more complex
transients of BZ reaction.
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